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Abstract Our objective was to develop a beta regression

(BR) model to describe the longitudinal progression of the 11

item Alzheimer’s disease (AD) assessment scale cognitive

subscale (ADAS-cog) in AD patients in both natural history

and randomized clinical trial settings, utilizing both indi-

vidual patient and summary level literature data. Patient data

from the coalition against major diseases database (3,223

patients), the Alzheimer’s disease neruroimaging initiative

study database (186 patients), and summary data from

73 literature references (representing 17,235 patients) were

fit to a BR drug-disease-trial model. Treatment effects

for currently available acetyl cholinesterase inhibitors,

longitudinal changes in disease severity, dropout rate, pla-

cebo effect, and factors influencing these parameters were

estimated in the model. Based on predictive checks and

external validation, an adequate BR meta-analysis model for

ADAS-cog using both summary-level and patient-level data

was developed. Baseline ADAS-cog was estimated from

baseline MMSE score. Disease progression was dependent

on time, ApoE4 status, age, and gender. Study drop out was a

function of time, baseline age, and baseline MMSE. The use

of the BR constrained simulations to the 0–70 range of the

ADAS-cog, even when residuals were incorporated. The

model allows for simultaneous fitting of summary and

patient level data, allowing for integration of all information

available. A further advantage of the BR model is that i

t constrains values to the range of the original instrument

for simulation purposes, in contrast to methodologies

that provide appropriate constraints only for conditional

expectations.
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Introduction

The Alzheimer’s disease assessment scale (ADAS) was

designed to measure the severity of the most important

symptoms of Alzheimer’s disease (AD) [17]. Its cognitive

subscale, ADAS-cog is the de facto standard primary out-

come neuropsychological measure for AD trials [22]. It

consists of 11 tasks measuring the disturbances of memory,

language, praxis, attention and other cognitive abilities that

are often referred to as the core symptoms of AD. It has

been extensively validated in English as well as numerous
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other languages. ADAS-cog scores range from 0 to 70,

with higher scores indicating greater cognitive impairment.

Our present objective is to develop a regression model that

describes disease progression as measured by ADAS-cog,

in AD patients. More specifically, we aim to provide a

regression model that permits a comprehensive synthesis of

available evidence, while also permitting the simulation of

realistic patient-level data.

The bounded nature of the ADAS-cog implies, a forti-

ori, nonlinear progression. In studies of normal elderly and

early AD populations that utilize the ADAS-cog, it is not

unusual to observe some patients with scores consistently

near the floor of the instrument (0), while in studies of

longer duration, moderate AD patients may progress to

scores near the ceiling of the instrument (70) over the

course of a study. Consequently, a rigorous approach to the

modeling of bounded scores is called for. These challenges

have been partially addressed by Ashford and Schmitt [2]

and subsequently by Samtani et al [23]. Specifically, their

models provide appropriate constraints for conditional

expectations ranging from 0 to 70 and support valid

inferences regarding population means. Despite these

substantial modeling advancements, Ashford and Schmitt

did not provide stochastic structures that could be used to

simulate new data, and the stochastic elements utilized by

Samtani et al. result in predictive distributions that are not

fully constrained to the 0–70 range.

Kieschnick and McCullough [11] provide an excellent

review of seven possible strategies for analyzing con-

strained response data. Included among the reviewed

methods were: approaches involving transformation of the

dependent variable, approaches using nonlinear regression

with normal residuals, approaches based on the censored

normal distribution, and approaches based on the beta

regression. The term ‘‘beta regression’’ has been used to

refer to regression (typically logistic regression) under the

assumption that residuals follow a beta distribution. This

methodology has been advocated in the statistics literature

as an effective means of modeling responses with con-

strained scales.

A beta regression model is proposed to describe the

longitudinal progression of the ADAS-cog, in AD patients

in both natural history and randomized clinical trial set-

tings. The advantage of the beta regression methodology in

this context is that the entire predictive distribution is

limited to the desired constraints, in contrast to method-

ologies that provide appropriate constraints only for

conditional expectations. This feature is particularly

advantageous in the context of clinical trial simulation,

since realistic data are generated even when residuals are

incorporated.

Also described in this paper is a modified version of the

usual beta regression model that is appropriate for meta-

analyses, including those based on a combination of sum-

mary-level and patient-level data. To our knowledge,

adaptations of beta regression to meta-analysis of this type

have not previously been published. The resultant model

structure described is a complete drug-disease trial model

for ADAS-cog that incorporates all available information,

from clinical trial and literature sources, and that is suitable

for clinical trial simulation purposes. The methodology is

broadly applicable to other endpoints.

Methods

Data

Data from three sources was utilized for model develop-

ment and testing: (1) The AD neuroimaging initiative trial

(ADNI), (2) The coalition against major diseases (CAMD)

database, and (3) the literature. ADNI data provided a rich

source for the natural longitudinal history of disease pro-

gression in patients with mild and moderate AD, and one of

the most complete sources of imaging and biomarker data

collected to date in any AD observational trial. The CAMD

database provided a rich standardized source for individual

level control arm data in mild and moderate AD patients

(both placebo and stable background therapy) from ran-

domized controlled clinical trials (refer to Table 2). The

literature (summary level data) provided data for the model

to estimate symptomatic treatment effects for AChE

inhibitors, long term disease progression in controlled mild

and moderate AD trials, and inter study variability. Each

source is described below in more detail.

ADNI

Data used in the preparation of this article were obtained

from the Alzheimer’s disease neuroimaging initiative

(ADNI) database (adni.loni.ucla.edu). The ADNI was

launched in 2003 by the National Institute on Aging (NIA),

the National Institute of Biomedical Imaging and Bioen-

gineering (NIBIB), the Food and Drug Administration

(FDA), private pharmaceutical companies and non-profit

organizations, as a $60 million, 5-year public-private

partnership. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), posi-

tron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be

combined to measure the progression of mild cognitive

impairment (MCI) and early AD. Determination of sensi-

tive and specific markers of very early AD progression is

intended to aid researchers and clinicians to develop new

treatments and monitor their effectiveness, as well as lessen

the time and cost of clinical trials.
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The Principal Investigator of this initiative is Michael

W. Weiner, MD, VA Medical Center and University of

California San Francisco. ADNI is the result of efforts of

many co-investigators from a broad range of academic

institutions and private corporations, and subjects have

been recruited from over 50 sites across the U.S. and

Canada. The initial goal of ADNI was to recruit 800 adults,

ages 55–90, to participate in the research, *200 cogni-

tively normal older individuals to be followed for 3 years,

400 people with MCI to be followed for 3 years and 200

people with early AD to be followed for 2 years. For up-to-

date information, see http://www.adni-info.org.

For this analysis, only data from the AD cohort was

used. AD patients were assessed at 0, 6, 12, and 24 months.

Detailed protocol information can be found at http://www.

adni-info.org.

CAMD

Led by Critical Path Institute (C-Path), CAMD is a con-

sortium of industry, FDA, EMA and patient advocacy

groups in Alzheimer’s and Parkinson’s diseases. The mis-

sion of CAMD is to create drug development tools (bio-

markers, disease models, etc) and advance them to

regulatory authorities for review and approval, through

sharing of non-competitive information across stakeholders

[21]. As part of its deliverables, CAMD developed a

standardized database of patient-level control arm data

from legacy clinical trials in AD, provided by CAMD

member companies. Existing standards set by the clinical

data interchange standards consortium (CDISC) were used,

and new ones were created wherever current standards did

not yet exist (http://www.cdisc.org/content2927) [20]. The

current database has patient level information from 6,000

individual subjects, spanning the continuum of MCI and

mild and moderate AD trials. Data from 3,179 mild and

moderate AD patients from the CAMD database was used

for this analysis. Detailed information can be found at

http://www.c-path.org/CAMD.cfm.

Literature data

The following criteria were used for determining which

data were included or excluded: (1) if the same results were

reported in different literature sources (e.g. one was the

original paper and the other was the same data from a

review article), only the primary source was used; (2) if

more than one summary value was reported with different

statistical analyses or method of imputation for missing

data at the same time point, such as observed cases (OC)

and last observation carried forward (LOCF), only one

value was chosen. OC was preferred over LOCF if avail-

able. In some articles, however, LOCF was used for all

evaluation time points (longitudinal) and both LOCF and

OC were reported at the end of the study to compare the

values. In this situation, LOCF was selected for all evalu-

ation time points within the article. Also, summary values

based on completers were excluded; (3) exploratory studies

were excluded if they were an open study with equal to or

less than 20 patients per treatment arm; and (4) a study was

excluded if the patient population was considered inap-

propriate (e.g. patients who dropped from a previous

study). Summary information for these literature data have

been previously tabulated by Ito et al. [9].

Model development

Given the success of previously published models in

characterizing many aspects of the progression of ADAS-

cog, key learnings from existing models were adapted in a

manner that would support a comprehensive meta-analysis

and that would enable realistic clinical trial simulation. A

large number of features of previously published models

were taken as starting points and were revisited only to the

extent required to obtain satisfactory model diagnostics.

These ‘‘accepted structural features’’ included:

1. The use of a generalized logistic function to describe

the natural progression of the disease on a constrained

scale [23].

2. The use of a Bateman-type function to describe the

incremental placebo [8, 10].

3. The use of Emax and log-linear functions to describe

the incremental effects of approved AChE inhibitors as

a function of dose and time [7, 9].

4. The placement of candidate covariate effects in the

model. Specifically, the use of baseline severity as a

covariate on the model intercept, and the use of

baseline severity, APOE genotype, and baseline age as

covariates on rate of progression [10, 23].

5. The use of baseline age and baseline severity as

covariates on the hazard of drop-out [26].

In addition, a number of important innovations were

also implemented:

1. A Bayesian implementation has been developed,

allowing for a probabilistically correct synthesis of

literature meta-data with patient-level data. This

allows for a particularly comprehensive analysis,

leveraging all available data.

2. The generalized logistic function for expected disease

progression is used in conjunction with Beta-distrib-

uted residuals (i.e. ‘‘beta regression’’), resulting in a

predictive distribution that falls entirely within the

allowable range of ADAS-cog scores (0–70) during

simulation.
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3. The covariance structure is extended to include inter-

study variation in intercepts and rates of progression

(beyond the variation already reflected by measured

study-level covariates).

4. The covariance structure is extended to include inter-

study heterogeneity in variance components. This

allows the model to account for the likely scenario

that studies differ in the quality of the methods and

investigators (potentially resulting in residual distribu-

tions with different variances in different studies) and

differ as well in the diversity of the enrolled patient

populations (potentially resulting in different inter-

subject variances in different studies).

Model specification

Parameterizing the beta distribution for beta regression

The density of a beta distribution is typically parameterized

as:

f ðxÞ ¼ xa�1ð1� xÞb�1=Bða; bÞ; 0� x� 1

where a[ 0, b[ 0, and B(a, b) is a normalizing constant

so that the density integrates to 1. When parameterized in

this way the mean and variance of the distribution are:

E½X� ¼ a
aþ b

V½X� ¼ ab

ðaþ bÞ2ðaþ bþ 1Þ

For the purpose of beta regression one isolates the mean

of the distribution as a parameter, reparameterizing as

follows:

a! hs; b! ð1� hÞs;

In this case the mean and variance may be expressed as:

E½X� ¼ h ð1Þ

V½X� ¼ hð1� hÞ
sþ 1

ð2Þ

Likelihood for individual patient scores

In this section, a beta regression model for patient-level

data is described. Let:

– ADASipk denote the observed ADAS-cog score on the

ith occasion in the pth patient in the kth study;

– tipk denote the time of the observation relative to the

randomization time for that patient,

– Dipk denote the dose assigned to the patient at time tipk,

expressed as a multiple of a reference dose (with

reference dose varying by drug).

The indices j and d will be used to identify the study arm

and drug (if applicable), where necessary using j(p) and

d(p) to express these as functions of the patient index p. We

use the notation ‘‘| patient p’’ to denote conditioning on all

patient-level random effects associated with patient p

(given the hierarchical structure of the model, this also

implies conditioning on all study-level random effects).

We specify the residual distribution of scores for patient

p using a beta distribution (this is the defining feature of

beta regression):

ADASipk=70 j patient p�Beta hipksk; 1� hipk

� �
sk

� �
: ð3Þ

This distribution is parameterized such that:

E½ADASipk=70 j patient p� ¼ hipk ð4Þ

V½ADASipk=70 j patient p� ¼ hipkð1� hipkÞ
sk þ 1

ð5Þ

Thus, hipk is the normalized (i.e. divided by 70)

conditional expectation for patient p. This conditional

expectation is then related to predictor terms (sometimes

referred to as the ‘‘systematic component’’ of the model

[1]) via a link function g [3] that maps the interval (0–1) to

the entire real line. We adopt a systematic component for

our model that is qualitatively similar to that of Ito et al.

[9], including terms for an intercept gpk, a slope with

respect to time apk, a placebo effect EPBO(tipk), (for patients

receiving either placebo or active intervention, this is a

nonlinear function with respect to time; for patients in the

ADNI AD cohort, this is set to zero), and EDRG(tipk, Dipk) is

the effect of drug, where applicable (nonlinear with respect

to both time and dose):

gðhipkÞ ¼ gpk þ apktipk þ EPBOðtipkÞ þ EDRGðtipk;DipkÞ ð6Þ

Borrowing again from the previous work of of Ito et al.

[9], we model the placebo and drug effects as:

EPBO;ipk ¼ b e�keltipk � e�keqtipk
� �

ð7Þ

EDRG;ipk ¼ ðDipkÞcdðpÞ
ED;dðpÞtipk

ET50;dðpÞ þ tipk
: ð8Þ

We have referred to our approach as only ‘‘qualitatively

similar’’ to that of Ito et al. because the parameter

interpretations and implied functional forms on the

original scale depend on the choice of link function g.

For example, for link functions other than the identity, the

additivity of terms within the systematic component does

not imply additivity of effects on the original scale, the use

of the linear term a t to represent natural progression does

not imply a linear natural progression on the original scale,

the use of a Bateman function for the placebo term does

imply that the incremental effect of placebo on the ori-

ginal scale follows an exact Bateman functional form, and

so forth. Nonetheless, the link functions of interest are
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generally well approximated by linear transformations over

limited ranges of the response variable. Thus, when the

individual terms contribute only modest increments to

the total systematic component (as is the case for all

placebo and drug effect terms of interest, as well as

disease progression terms over short time frames, e.g.

0–6 months), their incremental effects on the original scale

are approximately additive and have longitudinal shapes

that are qualitatively similar to the specified functional

form.

A typical choice of link function in this context is the

standard logit transformation, corresponding to the stan-

dard logistic model:

gðhÞ ¼ log
hipk

ð1� hipkÞ

� �
ð9Þ

However, as suggested by Samtani et al. [23],

generalizations of the standard logistic model may be

considered in recognition of potential asymmetries in the

progression. In principal, other link functions mapping

from the unit interval to the real line (e.g. the probit link, or

any inverse cumulative distribution function) could also be

considered. For present purposes we have focused on a

generalization that may be achieved with the following link

function described by Samtani et al:

gðhÞ ¼ log
hn

ipk

ð1� hn
ipkÞ

 !1=n
2

4

3

5 ð10Þ

This is one of a number of potential generalizations of

the logit transformation that have been proposed [23–25].

While this generalization was not ultimately selected by

Samtani et al. the availability of this model in closed form

allows for easier generalization to cases where placebo

effects and symptomatic drug effects must be accounted

for. Moreover, Samtani et al. report that this model and

their final selected model were nearly indistinguishable

with respect to the Akaike information criterion [15], when

applied to the ADNI data set.

The correspondence between our model specification

and that of Samtani et al. may be seen by setting both

EPBO(tipk) and EDRG(tipk, Dipk) to zero in Eq. 6, rewriting h
as a function of time (rather than as a parameter indexed by

visit), and applying the inverse of the generalized logit

transformation to both sides of the equation, resulting in:

hpkðtÞ ¼ ð1þ expð�nðgpk þ apktÞÞÞ�1=n: ð11Þ

This latter equation may be specified in differential form

as:

hpkð0Þ ¼ ð1þ expð�ngpkÞÞ�1=n
(initial condition) ð12Þ

h0pkðtÞ ¼ apkhpkðtÞ½1� hn
pkðtÞ� ð13Þ

This differential equation may be interpreted as a

statement that rates of progression are functions of

current states (hpk) and patient-specific rate parameters

(apk).

Patient-level variation in both intercepts and slopes is

achieved with patient-level random effects:

gpkj study k�N lg;k; r2
g;k

� �
ð14Þ

apkj study k�N la;k; r2
a;k

� �
ð15Þ

Study-level variation beyond that explained by

covariates and inter-subject variation is accommodated

by introducing study-level random effects:

lg;k �N mg; w2
g

� �
ð16Þ

la;k �N ma; w2
a

� �
ð17Þ

It is important to recognize that inter-subject variance

components rg, k
2 and ra, k

2 , rather than reflecting variation

in a natural population, are largely determined by the

stringency of inclusion / exclusion criteria, which vary by

study. Additionally, residual variances can be expected to

vary by study (for example, due to different levels of

investigator experience and training). It is therefore

desirable to allow for potential inter-study heterogeneity

in all three intra-study variance components. We

implement this heterogeneity as follows:

sk �Gammaðj�; j�/2
� Þ ð18Þ

1=r2
g;k �Gammaðjg; jg/

2
gÞ ð19Þ

1=r2
a;k �Gammaðja; ja/

2
aÞ ð20Þ

These distributions are parameterized to have means

1=/2
� ; 1=/

2
g; 1=/

2
a respectively and coefficients of variation

1=
ffiffiffiffiffi
j�
p

; 1=
ffiffiffiffiffi
jg
p

; 1=
ffiffiffiffiffi
ja
p

respectively.

Baseline MMSE (a cognitive assessment used for

screening and staging in AD) was employed as a covariate

on the lg, k intercept terms, since many predictive infer-

ences of interest to clinical trialists are conditional on

MMSE entry criteria for a trial (the MMSE is designed as a

screening tool and is almost universally incorporated in

inclusion / exclusion criteria, while the ADAS-cog itself is

rarely used for this purpose). Moreover, this was the only

covariate on the intercept terms, since baseline MMSE

values are highly correlated with baseline ADAS-cog val-

ues [10], and the former is therefore largely sufficient to

explain variation in the latter.

All of the covariates that were consistently available

across most data sources - baseline MMSE, age, APOE

genotype (number of ‘‘4’’ alleles), and gender - were

included as covariates on the slope (la, k) terms, consistent
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with the ‘‘full covariate model’’ approach. The use of the

first three of these covariates on rate of disease progression

is also consistent with the findings of Ito et al. [10] and

Samtani et al. [23].

Covariate effects were implemented using the following

substitutions in Eqs. 14 and 15 (we use ‘‘bMMSE’’ as

notation to refer to baseline MMSE):

lg;k ! lg;k þ kg;bMMSEðbMMSEpk � 21Þ ð21Þ

la;k ! la;k þ ka;bMMSEðbMMSEpk � 21Þ
þ ka;bAgeðbAgepk � 75Þ
þ ka;Apo1IðApoEpk ¼ 1Þ þ ka;Apo2IðApoEpk ¼ 2Þ
þ ka;GenderIðGenderpk ¼ FemaleÞ

ð22Þ

Operational likelihood for summary statistics

Following the approach of Gillespie et al. [7], we model

the summary-level data by directly specifying likelihoods

based on approximate sampling distributions. Since the

model for individual scores is nonlinear, the exact sampling

distributions for sample means are not available in ana-

lytical form. However, we invoke the approximate linearity

of the logit function over the range of primary interest (see

Appendix) to derive the approximate distributions, and

employ these approximations as our ‘‘operational likeli-

hoods’’. Specifically, using ADASijk to denote the reported

sample mean for arm j in study k, and letting ‘‘| arm j’’

indicate conditioning on all patient-level random effects for

all patients in arm j (and, per the model hierarchy, also

conditioning on all study-level random effects associated

with study k), the individual patient model implies that:

E½ADASijk=70j arm j� ¼ hijk �
1

njk

X

p:jðpÞ¼j

hipk

V½ADASijk=70 j arm j � ¼ 1

n2
jk

 !
X

p:jðpÞ¼j

V½ADASipkj patient p�

In addition to knowing the first and second moments of

the sample mean, we know that it, like the individual

scores, is constrained to the range between zero and

seventy. The following Beta distribution therefore, while

not an exact likelihood for the normalized sample mean,

nonetheless has the basic desired distributional properties

and may serve as our ‘‘operational’’ conditional likelihood:

ADASijk=70 j arm j�Beta hijkðnjksk þ njk � 1Þ;
�

ð1� hijk

�
ðnjksk þ njk � 1ÞÞ:

We note that the factor of njk in the preceding expression

provides appropriate weighting of residuals according to

sample size, and no other weighting of the conditional

residual distribution is required (though additional weighting

according to sample size is introduced via the random effects

below).

As discussed above, the exact distribution of hijk is not

analytically available. However, invoking the approximate

linearity of the logit transformation over the range of

interest, we have:

logit½hijk� � logit½h�ijk where,

logit½h�ijk � ajktijk þ gintercept;jk þ Eplacebo;ijk þ Edrug;ijk

ajk �
1

njk

X

p:jðpÞ¼j

apk

gintercept;jk �
1

njk

X

p:jðpÞ¼j

gintercept;pk:

The full patient level model would then imply that:

gjkj study k�Nðlg;k; r2
g=njkÞ

ajkj study k�Nðla;k; r2
a=njkÞ

Missing data mechanism(s) to account for dropout

Since the model attempts to characterize the complete

data distribution, summary statistics based on direct sim-

ulation from the model are not expected to correctly

mimic the behavior of real summary statistics, the latter

being computed using incomplete data [4, 6]. Even in the

unlikely scenario that the true missing data mechanism

(MDM) is missing completely at random (MCAR), the

real summary means will be based on fewer observations

than their simulated counterparts, and the latter will

therefore have standard errors that are unrealistically low.

Accordingly, for the purpose of model validation, we

incorporate a MDM in our simulations. Parameters for the

MDM model were estimated independently from the AD

progression parameters (i.e. this was a separate model

fitting exercise).

A realistic MDM would be fairly complex and corre-

spondingly would require substantial justification. In order

to be concise, we proceed for present purposes with a

relatively simple MAR MDM that assumes missingness to

be a function of baseline MMSE, age, and study (this last

as a random effect). More precisely, we proceed as if

missing values occur as the result of attrition, and assuming

the times-to-attrition may be described as:

Tpk �Weibullða; hpkÞ; ð23Þ

where the log of the subject-specific frailty hpk is modeled

as:

logðhpkÞ ¼bSTUDY;k þ b1ðbMMSEpk � 21Þ
þ b2ðbAgepk � 75ÞÞ ð24Þ
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The use of baseline MMSE and baseline age as

covariates on the dropout hazard borrows from the

findings of Faltaos [26].

Note that the proposed model for the MDM was

employed only for the purpose of model validation. For the

purpose of model fitting, we assume the less restrictive

conditions that are required for ignorability of the missing

data mechanism, implying that posterior distribution for

parameters describing the complete data distribution may

be computed using only the observed response and

covariates [4, 5]. With respect to patient-level data, the

assumptions associated with (approximate) ignorability are

arguably moderately realistic. For example, data may be

considered missing at random (MAR) with respect to our

model even if an individual’s missing data status at a

particular time point is a function of baseline MMSE, the

observed ADAS-cog scores at previous time points, and the

treatment assignment (since all of these terms are in the

model). With respect to summary-level data the potential

biases associated with missing data are not as easily dis-

missed, however, most of the summary-level data is asso-

ciated with studies of shorter duration, for which missing

data rates are generally low.

Model for missing covariate values

The baseline age, ApoE4 genotype, and gender variables

all had missing values for at least some records in the

database. Ignoring records with missing covariate values

was not considered an acceptable solution, and exclusion of

key covariates such as age and ApoE4 genotype was

considered highly undesirable. To this end, the model was

extended with explicit likelihoods for covariate variables.

Given the Bayesian implementation of the model, this

approach amounts to averaging over the predictive distri-

bution of missing covariate values. Consequently, response

values associated with missing covariates are retained in

the analysis, while avoiding biases associated with single

imputation methods [14].

The ‘‘general location model’’ [14, 18] was used to specify

a joint likelihood for the covariate variables, in recognition

of potential stochastic dependencies between the variables.

Basic sampling theory was applied to derive the distribution

of sample means and proportions under the general location

model, and these sampling distributions were specified as the

likelihoods for covariates in the meta-data.

Priors

Qualitatively, our intent was to implement priors that

constrained parameters to a modest superset of clinically

plausible values (i.e. either excluding or rendering unlikely

only highly implausible values) and to be otherwise

noninformative, consistent with the notion of vague priors

[12]. Accordingly, ranges based on clinical plausibility

(specified on the original scale) were converted to para-

metric constraints using the approximate relationships

described in the Appendix. In general, the approach was to

use Uniform priors within these ranges, although non-

Uniform distributions for certain parameters were

employed for mathematical and/or computational conve-

nience. The preference for Uniform priors was primarily

based on the relative ease with which Uniform priors can

be interpreted by scientists from different backgrounds

seeking to understand the model. A potential disadvantage

of Uniform priors is their lack of support for some

parameter values that may technically be plausible. How-

ever, density plots of the posterior are generally sufficient

to diagnose this situation (i.e. if the posterior mass is

concentrated near one of the boundaries of the prior sup-

port, the usual implication is that the prior is informative to

an undesirable degree). The converse problem, that of

offering too much support for parameter values that are

implausible and yet cannot be ruled out by the data, may be

addressed via sensitivity analyses. Additionally, it is often

relatively easy to diagnose the situation where the data

provide no information with which to estimate a parameter,

since a Uniform posterior that is identical to the prior is

easily recognized (indeed, this exact situation arose for the

ET50 of rivastigmine, alerting us to a lack of sufficient

longitudinal data with which to estimate this parameter).

The specific priors on the parametric scale are provided

in Table 1.

Model Fitting

Reparameterizations

In order to reduce autocorrelation during Markov Chain

Monte Carlo (MCMC) sampling, the following reparame-

terizations were employed:

ðb; keq; kelÞ �! �bð1=kel � 1=keqÞ; keq � kel; kel

� �

ðED;ET50Þ �!
ð12ÞED

ET50 þ 12
;ET50

	 


The term ð12ÞED=ET50 þ 12 represents the treatment

effect at 12 weeks, which is a more directly estimable

quantity than the treatment effect at t ¼ 1 The reference

time of 12 weeks was selected because the majority of the

analyzed trials included assessments at 12 weeks or later.

Computation

Posterior distributions were approximated by Markov

Chain Monte Carlo (MCMC) sampling, specifically by
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Gibbs sampling as implemented in WinBUGS version

1.4.3 [16]. For each evaluated model, four distinct MCMC

chains were generated, with initial values for most

parameters randomly drawn from the prior. In general this

resulted in a desirable over-dispersion of initial values as

compared to the posterior. Each chain had a total length of

50,000 iterations, of which the first 45,000 ‘‘burn-in’’

samples were discarded from analysis and every 25th of the

remaining iterations were kept (‘‘thinning’’). Data man-

agement, model validation, and model summary were

carried out in the R language [19]. To minimize compu-

tational time, the MCMC chains were run in PARALLEL.

To avoid pseudo-random number generation overlap

between chains, the R package, L’Ecuyer et al. [13] was

used to assure inter-chain independence. Supporting code

is available through http://www.opendiseasemodels.org.

Model evaluation

Model evaluation was broadly comprised of convergence

diagnostics, internal validation to assess goodness of fit,

and external validation to assess predictive validity. Stan-

dard MCMC convergence diagnostics were used including

sampling history plots, posterior density estimates, and

Gelman-Rubin convergence diagnostics. Internal valida-

tion focused primarily on posterior predictive checks based

on both study-specific predictions (conditional on study-

specific random effect estimates) and marginal predictions

(conditional only on covariate values). In addition, external

validation proceeded by generating predictions based only

on covariate values for a study that had been withheld from

the modeling analysts during the model-fitting stage and

comparing these predictions to observed values. The

Table 1 Priors and related

quantities of interest

Details of conversion between

the parametric scale to the

original (ADAS-cog) are

provided in the Appendix

Related quantity of interest Prior (parametric scale)

Population average

Intercept (points) mg * U (-2.5, 0)

Slope (points per year) ma * U (0, 0.05)

Covariate adjustments

On intercepts, ADAS-cog points

Per point MMSE kg, bMMSE * (- 0.1, 1)

For slopes, ADAS-cog points per year

Per point MMSE ka,bMMSE * N (0, 0.01)

Per year of age ka, bAge * N (0, 0.01)

per APOE4 heterozygote (vs non-carrier) ka, Apo1 * N (0, 0.01)

Per APOE4 homozygote (vs non-carrier) ka, Apo2 * N (0, 0.01)

Per female (vs. male) ka,Gender * N (0, 0.01)

Placebo (incremental) effect

Area under curve (point-weeks)
R

EPBO�Uð0; 10Þ
Constant for elimination (weeks-1) kel * U (0.0001, 0.25)

Constant for onset of placebo effect (weeks-1) (keq - kel) * U (0, 4)

Drug effects (same prior for all AChE inhibitors)

Difference from placebo at reference dose at 12 weeks (points) EDRG(12, D*) * U (0, 0.3)

Time to 50 % of maximum drug effect (weeks) ET50 * U (0, 100)

Shape of dose response c * U (0.01, 3)

Inter-study SD

Of intercepts (points) wg * U (0, 1)

Of slopes (points per year) wa * U (0, 0.01)

Cross-study (population) average

Of inter-individual SD of intercepts (points) g, /g
M * U (0, 2)

Of inter-individual SD of intercepts (points per year) /a, /a
M * U (0, 0.03)

Of residual standard deviation (points) /�; /M
� �Uð0; 2Þ

Inter-study variance heterogeneity (1=
ffiffiffiffi
j�
p ¼ CV%)

Of inter-individual precisions of intercepts jg, jg
M * Pareto (1, 0)

Of inter-individual precisions of slopes ja, ja
M * Pareto (1, 0)

Of residual precision j�; jM
� � Paretoð1; 0Þ
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external validation study was randomly selected from a

subset of CAMD studies that had sufficient duration

([52 weeks) and size ([1,000 patients) and contained

patients with and without background therapy in the con-

trol arm.

Model simulation

As is often the case for nonlinear models, many quantities

of interest (most notably population intercepts and slopes)

were not directly available as parameter estimates. In order

to determine the model implications with respect to these

quantities, populations of 1,000 patients were simulated for

various covariate settings of interest and summary statis-

tics of interest were computed for these simulated popu-

lations. Average rates of progression were estimated by

simulating populations in the absence of placebo or drug

effects and computing the average change from baseline to

52 weeks for the simulated individuals. (Since the model

implies a nonlinear progression, this one year average

change from baseline is only an approximation to the

instantaneous rate of progression at any given time during

the first year.)

Results

Data summary

Literature data

A total of 73 studies were collected from the literature,

representing 27,895 patients, of which 17,235 patients

were in arms used in the analysis (data from control

arms other than donepezil, rivastigmine, and galantamine

were not included), similar to those described in Ito

et al. [9]. A brief summary of the characteristics of the

trials collected in the literature database are available on

request. Changes in the control arm data demonstrated a

‘‘hockey stick’’ shape, typical in most AD trials (Fig. 1).

Following an initial control arm improvement, patients

return to a normal progression of disease, which over the

course of one to two years, often appears linear, as

evidenced by the linearity of the locally weighted scat-

terplot smooth (loess). Drug treatment arms appear to

depart from the normal progression of control arms, but

then return to the normal progression, maintaining an

offset.

Fig. 1 Observed mean ADAS-

cog change from baseline over

time by compound from the

literature data. Loess line is in

red
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CAMD

Table 2 describes the nine studies used for data analysis

from the CAMD database, available at the time database

development work was initiated in September of 2010.

Studies included in the CAMD database after this time

were not included. The studies included in the CAMD

database consist of all control arm data from all CAMD

member-sponsor AD trials in mild and moderate AD that

were supplied to CAMD from these studies (both placebo

and background therapy arms). Since CAMD focuses on

sharing of pre-competitive information, drug treatment

arms were not available in the database.

Basic demographics data were similar across the studies

in the CAMD database (Table 2). Mean baseline MMSE

scores ranged from 19.4 to 21.2 across the studies, with

mean age ranging from 72.4 to 75.0 years. ApoE4 status

(% e4 carriers, defined as patients with at least one copy of

the e4 allele) was also similar for those studies where this

information was available. ADAS-cog scores are plotted by

study in Fig. 2, while changes from baseline can be seen in

Fig. 3.

ADNI

The available dataset contained 817 patients consisting of

229 normal (NL), 402 MCI and 186 AD patients, but only

the AD patient data were used for the analysis Average age

in the AD cohort was 75.3 ± 7.6, with 47.3% Female.

Baseline ADAS-cog and MMSE were 18.7 ± 6.3 and

23.3 ± 2.0 respectively. 33.9 % were ApoE4 carriers and

66.1 were non-carriers. The majority (93.5 %) were white.

Observed longitudinal ADAS-cog data for all ADNI

groups are visualized in Fig. 4, showing the clear ‘‘floor’’

effects in the normal elderly.

Final model

The final model was as specified in the Methodology sec-

tion, with two noted exceptions.

1. Convergence diagnostics suggested that the general-

ized logistic asymmetry parameter n was not well-

estimated. Fixing the value of at 1 (resulting in the

standard, symmetrical, logistic function) reduced the

deviance information criteria (DIC) from -14,363 to

-15,115, and this simplification was therefore

employed in the final model. Interestingly, the reten-

tion of n in the model appeared to be advantageous

when the literature summary data were removed from

the estimation, as in this case the use of the generalized

logistic resulted in a decrease of the DIC from -

13740.26 to -14137.44. Moreover, the posterior

median for n in this case was 3.76, corresponding to

a sigmoidal inflection point at ADAS-cog = 46 points,

substantively very similar to the estimated inflection

point at ADAS-cog = 42 points reported by Samtani

et al. [23].

2. A graphical review of post-hoc (study-specific) esti-

mates for inter-subject and residual variances revealed

substantially discordant estimates for the meta-data in

comparison to the individual patient data. Theoreti-

cally, our weighting of inter-subject and residual

variances according to sample sizes would be expected

Table 2 Studies included in the CAMD database for model development work

Study 1000 1009 1013 1014 1055 1056 1057 1058 1101 Total

Duration (weeks) 12 12 78 78 52 54 54 24 78 –

N 66 164 707 639 140 484 492 162 325 3179

Age (years) 73.7

(8.63)

74.2

(6.36)

74.2

(8.06)

75.0

(8.42)

73.3

(8.16)

72.9

(8.18)

74.2

(7.95)

72.4

(8.70)

73.1

(8.75)

73.9

(8.21)

Female % 54.5 55.5 50.4 56.2 58.6 56.4 61 59.3 51.1 55.3

APOE status (% e4

carriersa)

– 46.9 – – – 59.3 56.1 48.8 59.6 –

bMMSE 20.5

(3.57)

20.6

(3.82)

20.6

(3.30)

21.2

(3.37)

19.4

(3.92)

19.9

(4.22)

19.4

(4.07)

19.5

(4.18)

20.9

(3.60)

20.3

(3.78)

bADAS-cog 19.9

(7.43)

24.2

(11.6)

23.6

(8.82)

21.2

(8.50)

24.7

(10.2)

24.0

(10.4)

25.3

(10.8)

24.8

(10.0)

22.3

(9.70)

23.4

(9.78)

Years since diagnosis 2.6

(\1–8)

\1

(\1–11)

2

(\1–10)

2

(\1–11)

– 2.5

(\1–20)

2

(\1–10)

1.5

(\1–10)

2.4

(\1–12)

2

(\1–20)

Stable background

therapy

Yes No Both Both No Yes Yes No Yes Both

a ApoE4 carriers include patients with at least one copy of the e4 allele at the APOE locus

Parentheses indicate standard deviation for age, bMMSE, and bADAS-cog, and indicate range for years since diagnosis
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to result in (sample-size normalized) variance compo-

nents with comparable magnitudes. That these adjust-

ments did not succeed may be at least partly

attributable to incomplete sample size information

(e.g. in many cases only the number of patients

randomized or the number of patients completing the

study is reported), and/or due to imputations prior to

computations of reported means. This is perhaps

cautionary for meta-analyses based only on aggregate

data, in which context the present problem would go

undiagnosed. In order to remove the influence of the

meta-data on the population-level variance components,

two distinct sets of variance component parameters (one

set for the meta-data and one set for the individual

patient data) were employed.

Posterior summaries for all population parameters (i.e.

parameters at the highest level of the model hierarchy) are

provided in Table 3, which also provides summaries of the

approximate posteriors for the estimands on the original

scale (the parametric posterior results directly from fitting

the model, and the approximate posterior for the estimands

on the original scale is obtained by applying the conver-

sions provided in the Appendix).

Fig. 2 Observed ADAS-cog scores over time by study in CAMD studies. Locally weighted scatterplot smooth (loess) line is shown in red
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Model Simulation

The model developed provided parameter estimates sim-

ilar to those described by previous authors [2, 8, 21, 23].

Estimates of baseline ADAS-cog (intercept) from baseline

MMSE (Table 4) were consistent with the relationships

observed between MMSE and ADAS-cog in the literature,

CAMD, and ADNI databases. The parameter estimates

observed for covariates of age (Table 5), ApoE4 status,

and gender (Table 6) on rate of disease progression on

slope were also directionally consistent with previously

reported relationships [8, 21, 23]. Specifically, point

estimates from the current model suggest that progression

rates increase with baseline severity, decrease in baseline

age, ApoE4 homozygous carriers progress more rapidly

than non-carriers and heterozygotes (though not signifi-

cant at the 95 % confidence level) , and males progress at

a faster rate than females (though not significant at the

95 % level). The effects of age and ApoE4 genotype were

simulated and tabulated separately because these two

variables are partially confounded, possibly because older

patients who were homozygous for ApoE4 were often too

far advanced in the disease to be enrolled in the trials. The

rates of progression for different baseline severity levels

Fig. 3 Observed ADAS-cog changes from baseline over time by study in CAMD studies. Locally weighted scatterplot smooth loess) line is

shown in red
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(Table 4) also align with previously reported values

[8, 21].

To visualize the model implications with respect to the

dependence of slope and intercept on baseline MMSE,

refer to Fig. 5, which shows the time-course of expected

ADAS-cog scores for ‘‘average individuals’’ (all random

effects set to zero, at a reference covariate setting) from

AD subpopulations with varying levels of baseline MMSE.

One notes that for the range of baseline MMSE scores that

are represented in our primary data sources, the nonlin-

earities in the expected time-courses are practically negli-

gible. Note this refers only to the expected time-courses for

‘‘average individuals’’ in each MMSE-defined subpopula-

tion. By contrast, nonlinearities are apparent at the indi-

vidual level, as was seen in posterior predictive checks for

individual profiles (not shown here). Figure 5 demonstrates

the nonlinearities implied by the model over a longer

period of time (Fig. 6).

Model evaluation

Posterior predictive checks

Figure 7 provides unconditional predictive checks (not

conditioned on study-level random effects), for studies that

were included in the model building from the CAMD and

ADNI datasets. The results suggest that an adequate fit was

established.

External validation

The response data from the selected CAMD protocol was

withheld and blinded from model developers during the

model development phase. The final model was then used

to generate a predictive distribution for the withheld

response data, given the covariate values for that study, in a

manner identical to that used for the internal validation

‘‘unconditional’’ predictive checks. The predictive validity

of the model was then assessed by graphically comparing

the observed data to the model predictions (Fig. 8) to

determine if all values fell within the 90 % prediction

interval.

Dropout model summary and evaluation

The fitted dropout model exhibited a high degree of

agreement with the observed dropout rates, as seen in

Fig. 9. The model adequately captures the dropout rate

both by baseline MMSE and by age in these two plots.

Discussion

Early models described ADAS-cog as a linear progression

as a function of the baseline score, and a progression of the

disease as a function of time [20]. The Ito literature model

identified that the severity of the disease itself influenced
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Fig. 4 Longitudinal ADAS-cog

by patient population in ADNI

study. Loess line is in red
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the slope, and thus the slope changed over time (intro-

ducing non-linearity). More recent models directly intro-

duced non-linear relationships to describe the course of

disease over time. Earlier models also varied with respect

to the completeness of components required of a drug-

disease-trial model. Of those described, none had all

components required that describe existing drug effects, the

underlying disease progression, and all pertinent factors be

considered in a clinical trial. A drug-disease-trial model

that includes all these components would require underly-

ing data that can inform each of the various trial compo-

nents in the model. For example, natural history data

Table 3 Summary of posterior distribution on parametric scale

Description of estimand Parameter Estimated posterior quantile

2.5th %ile Median 97.5th %ile

Population average

Intercept (points) mg -0.83 -0.80 -0.77

Slope (points per year) ma 3.81 9 10-3 5.07 9 10-3 6.08 9 10-3

Covariate adjustments

Intercepts

Per MMSE point kg,bMMSE -0.13 -0.13 -0.12

Slopes

Per MMSE point ka,bMMSE -7.84 9 10-4 -6.76 9 10-4 -5.68 9 10-4

Per year of age ka,bAge -1.59 9 10-4 -1.14 9 10-4 -6.98 9 10-5

For ApoE4 heterozygote vs non-carrier ka, Apo1 -6.52 9 10-5 -2.49 9 10-5 1.96 9 10-5

For ApoE4 homozygote vs non-carrier ka,Apo2 -1.12 9 10-5 1.25 9 10-4 2.60 9 10-4

For female vs. male ka,Gender -1.36 9 10-3 -6.53 9 10-4 9.92 9 10-5

Placebo (incremental) effect

Area under curve (point-weeks)
R

EPBO 3.72 5.30 9.10

Constant of elimination (weeks-1) kel 1.15 9 10-2 2.75 9 10-2 4.87 9 10-2

Constant of onset (weeks-1) keq 4.91 9 10-2 8.08 9 10-2 0.17

Drug (incremental) effect at 12 weeks

Donepezil 10 mg QD (points) Edon(12, 10) 0.11 0.14 0.17

Galantamine 24 mg QD (points) Egal(12, 24) 0.13 0.16 0.18

Rivastigmine 6 mg QD (points) Eriv(12, 6) 7.43 9 10-2 0.13 0.17

Onset of drug effects (ET50)

Donepezil (weeks) ET50, don 0.36 1.62 4.94

Galantamine (weeks) ET50, gal 5.25 8.98 15.48

Rivastigmine (weeks) ET50, riv 0.39 7.90 75.23

Shape of dose response

Donepezil cdon 3.35 9 10-2 0.24 0.59

Galantamine cgal 1.95 9 10-2 0.20 0.55

Rivastigmine criv 1.33 9 10-2 0.11 0.53

Inter-study SD

Of intercepts wg 5.80 9 10-2 9.54 9 10-2 0.136

Of slopes wa 8.39 9 10-4 1.64 9 10-3 2.80 9 10-3

Cross-study (population) average

Of inter-individual SD of intercepts g 0.38 0.41 0.42

Of inter-individual SD of slopes a 6.07 9 10-3 7.78 9 10-3 9.95 9 10-3

Of residual SD /� 9.97 9 10-2 0.11 0.11

Between-study variation (CV%)

In inter-individual precisions of intercepts 1=
ffiffiffiffiffi
jg
p

3.15 9 10-2 0.14 0.39

In inter-individual precisions of slopes 1=
ffiffiffiffiffi
ja
p

0.29 0.61 1.18

In residual precision 1=
ffiffiffiffiffi
j�
p

5.40 9 10-2 0.12 0.28
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inform estimation of underlying disease progression and

provide and a rich source of covariates for model building,

placebo arm data inform estimation of the magnitude, onset

and offset of placebo response in controlled clinical trials

as well as the rate of drop-out in the trials, and summary

data from the literature support estimates of various drug

effects (magnitude, time to onset, and durability). Unfor-

tunately, no single trial could provide all of these elements.

The proposed BR model is both theoretically coherent

and practically effective for simultaneously describing

multiple aspects of a large and diverse set of data, while

maintaining a reasonable degree of parsimony and inter-

pretability. It incorporates key learnings from previous

authors, and introduces new enhancements. The model fit,

being based on a more comprehensive collection of data

than has been used previously, arguably represents our

most reliable and accurate estimates to date based on the

totality of the available evidence. The current model pro-

vides a sufficient basis for simulating a wide variety of

clinical trial designs in order to determine their operating

characteristics.

BR models have broad utility, perhaps under-recognized in

pharmacometrics, for analyzing constrained response data. In

general, BR models may be implemented on a variety of

software platforms. While the meta-analytic aspect of our

analysis requires an extension of typical beta-regression

Table 4 Model predicted expected mean ADAS-cog score intercept

by bMMSE

BMMSE Median 5 % LB 95 % UB

16 32.2 29.6 34.9

21 22.3 20.0 24.8

26 14.2 12.4 16.1

Table 5 Model predicted expected mean change in ADAS-cog score

over one year in the absence of a placebo or drug effect, by baseline

age

Age Median 5% LB 95% UB

69 4.92 3.71 6.13

75 4.39 3.51 5.39

80 4.00 2.97 5.17

Table 6 Model predicted expected mean change in ADAS-cog score

over one year in the absence of placebo or drug effect, by baseline

MMSE, gender, and ApoE4 status

BMMSE Gender ApoE4 Median 5 % LB 95 % UB

16 Male 0 7.14 4.48 9.54

16 Male 1 7.07 4.49 9.42

16 Male 2 8.03 5.20 10.40

16 Female 0 6.53 3.73 9.05

16 Female 1 6.52 3.88 9.04

16 Female 2 7.55 4.76 9.78

21 Male 0 4.48 1.99 7.09

21 Male 1 4.43 2.06 6.94

21 Male 2 5.43 2.82 8.06

21 Female 0 3.97 1.42 6.57

21 Female 1 3.97 1.52 6.59

21 Female 2 4.88 2.16 7.17

26 Male 0 1.69 -0.28 4.12

26 Male 1 1.70 -0.33 4.00

26 Male 2 2.39 0.34 4.90

26 Female 0 1.36 -0.61 3.78

26 Female 1 1.35 -0.68 3.71

26 Female 2 2.01 0.02 4.53
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Fig. 5 Predicted two year ‘‘natural progression’’ (i.e. in the absence

of any intervention, including placebo) for an ‘‘average individual’’

(i.e. with all random effects set to zero, at reference covariate settings

age = 75, male, ApoE4 non-carrier) as a function of baseline MMSE.

Predictions well-supported by the data are those in the grey shaded

area; predictions outside of this range are extrapolations. All

predictions refer to simulated subjects with a diagnosis of probable

AD. Thus, to interpret the prediction for baseline MMSE = 30 (for

example), one must envision a population of patients who are first

diagnosed with probable AD (perhaps based on an initial screening

MMSE assessment) and subsequently obtain a baseline MMSE score

(perhaps based on a baseline assessment that is distinct from the

screening assessment) of 30. To the extent that such subpopulations

are unlikely in practice, one may simply view the prediction for

MMSE = 30 as a mathematical extrapolation

J Pharmacokinet Pharmacodyn (2012) 39:479–498 493

123



Year

A
D

A
S

−
co

g

20

30

40

50

60

70

0 2 4 6 8 10

BMMSE = 26

0 2 4 6 8 10

BMMSE = 21

0 2 4 6 8 10

BMMSE = 16
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median predictions for an

‘‘average individual’’ (i.e. with

all random effects set to zero, at

reference covariate settings age

= 75, male, ApoE4 non-carrier)

and grey region represents the

corresponding 90 % credible

interval for the predictions.

Predictions past two years

represent extrapolations beyond

the extent of the available data,

and are intended primarily to

show that the mathematical

implications of the model are

consistent with the expected

nonlinear progression of the

endpoint
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machinery and we are uncertain whether our particular hier-

archical beta-regression model could be easily implemented

outside of WinBUGS, application of our model to simpler

patient-level data sets appears to be straightforward in popular

modeling software. For example, NONMEM allows for

specification of an arbitrary likelihood for residuals, and beta

regression generally employs the beta distribution only for the

residual likelihood. In R, a flexible class of beta regression

models has been implemented in the package betareg (http://

cran.r-project.org/web/packages/betareg/vignettes/betareg-ext.

pdf).

To our knowledge, this is the first integration of patient

level and literature level data for development of a drug-

disease-trial tool. The implementation of this type of

integrative model provided a complete knowledge man-

agement framework, allowing clinical trial design teams to

utilize all available knowledge, to simulate myriad trial

design scenarios to answer specific questions within a

quantitative framework. Conversely, we note certain limi-

tations of this first application of this work. The predictive

implications of the model need to be investigated under a

wider variety of plausible missing data mechanisms. This is

the case for model validation purposes (specifically, for

posterior predictive checks) as well as for future clinical

trial simulations to evaluate trial designs. Additionally, our

current strategy for handling missing covariate values may

be unwieldy when considering a broader set of covariates

that are missing at higher rates.

The work described here was completed to support the

CAMD, whose goal is to provide a pre-competitive space

to allow health authorities, industry, and patient advocacy

groups to work together to develop tools to facilitate and

accelerate drug development in neurodegeneration. In that

spirit, we encourage interested parties to visit C-Paths

CODR page (http://codr.c-path.org) a unique resource for

Critical Path Institute consortia members and qualified

researchers to upload and work on valuable scientific data,

relevant to biomarkers of drug toxicity, neurodegenerative

diseases, and patient-reported outcomes; as well as the

Alzheimers Disease Progression site model project http://

www.opendiseasemodels.org, through which the combined
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Fig. 8 Plot of model prediction for a study selected (1014) (external

validation)
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data set, all R code and WinBUGS model files, training

documentation, and a number of supplementary diagnostic

figures and tables may be retrieved. The Open Disease

Models website, which links to an associated Googlecode

git repository (http://code.google.com/p/alzheimers-disea-

se-progression-model-adascog) provides a platform for

interested parties to contribute model criticism, additional

code (including edits to existing code if authorized), and

supplementary analyses.
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Appendix: Linear approximation to the logit

transformation

One may obtain linear approximations to the logit and

inverse logit transformations using first-order Taylor

expansion of logit(x) around x = 0.5, resulting in the

Table 7 Approximate transformations between parametric scale and original scale

Description of estimand Approximation as function

of parameters

Population average

Intercept (points)a 70	 1=ð1þ expð�mgÞÞ
Slope (points per year)a 52 9 70 9 ma / 4

Covariate adjustment per point MMSE

For intercepts (points ADAS-cog per point MMSE) 70 9 kg / 4

For slopes (points ADAS-cog per year per point MMSE) 52 9 70 9 ka / 4

Placebo (incremental) effect

Area under curve (point-weeks) 70	
R

EPBO=4

Constant for elimination (weeks-1) kel

Constant for onset of placebo effect (weeks-1) keq

Drug effects (same prior for all AChE inhibitors)

Difference from placebo at reference dose at 12 weeks (points) 70 9 Edrug(12, D*) /4

Time to 50 % of maximum drug effect (weeks) ET50

Shape of dose response c

Inter-study SD

Of intercepts (points) 70 9 wg/ 4

Of slopes (points per year) 70 9 wa / 4

Cross-study (population) average
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approximation logitðADAS=70Þ � �2þ 4	 ðADAS=70Þ ,

or for the inverse relationship. This linear approximation is

not invoked for modeling per se, although the justification

of our ‘‘operational likelihood’’ for summary statistics does

invoke the existence of a linear approximation. Rather, its

primary utility is to enable an approximate interpretation of

model parameters on the original scale, this being impor-

tant for both prior specification and model (posterior)

summary.

We tabulate the approximate transformations used for

each parameter in Table 7. With the exception of the

population average intercept, all conversions rely on the

linear approximation described above (in the case of the

population average intercept, one may apply the inverse

logit transformation directly, since this is a location

parameter; similar exact transformations are not possible

for scale parameters). Where appropriate, a multiplicative

factor of 52 is also used to convert weekly rates to annual

rates.
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